
Functional translation of Rust
programs

Internship report

Sidney Congard

M2 - Logique Mathématique et Fondements de
l’Informatique

Supervised by Bhargavan Khartikeyan at Prosecco

September 2022

Contents
1 Context 1

1.1 Rust . 1

2 The Aeneas toolchain 3
2.1 LLBC . 5
2.2 Charon . 8
2.3 Aeneas . 9

3 Personal work 10
3.1 Constants . 10
3.2 Joins . 13
3.3 Typed loan identifiers . 22
3.4 Denotational semantics . 26

4 Related works 27

5 Future works 28

1 Context

1.1 Rust

Rust is a programming language started in 2006 by Graydon Hoare, exas-
perated by numerous crashes from his elevator firmware. Its first version has
been published in 2014 and it has since become increasingly popular. Rust
enables system programming by giving a great control over performances and
memory management while having high-level features (ML-style type infer-
ence, typeclasses, ...) and a type system that rules out undefined behaviors,
such a memory errors (use-after-free, access to initialized memory, ...) or
data races.

Those errors are ruled out by the Rust borrow checker, a part of its type
system which is based on the exclusion between aliasing and mutability:
a value can be either borrowed by potentially multiple shared references
(written &T) or by a single mutable reference (written &mut T), but not both
at the same time.

1

let mut x = 2;
let p = &mut x;
// Modify x through p.
*p += 3;
// To access x, p is first dropped here:
// Two simultaneous mutable accesses to x is forbidden.
assert!(x == 5);

To track which values are borrowed by a given reference, each reference
is associated to a lifetime which may become explicit in type definitions and
function signatures. A lifetime is a name for a region (a set of data) of the
program.

// Returns one of the given references.
fn choose<'a, T>(e: bool, x: &'a mut T, y: &'a mut T)

-> &'a mut T
{

if e { x } else { y }
}

For example, this function manipulate mutable references with an explicit
lifetime 'a. Because its output may alias either the value borrowed by x or
the one borrowed by y, neither x nor y values must be accessible as long
as the output is alive. Those dependencies are expressed by lifetimes: all
outputs associated to a given lifetime must be dropped to be able to access
the inputs underlying value.

let mut x = 2;
let mut y = 6;
let p = choose(true, &mut x, &mut y);
*p += 3;
// To access x, p is first dropped (and give also back y).
assert!(x == 5);

References can also be split by destructuring records or enumerations:
we can go from &mut (A, B) to (&mut A, &mut B) but not the converse.

2

Moreover, a value under a reference can be re-borrowed: this is useful because
a mutable reference cannot be copied, but the same value can be borrowed
multiple times (if we get it back before each new borrow).

fn inc(x: &mut u32) {
*x += 1;

}

let mut x = 2;
let mut y = 6;
let p = choose(true, &mut x, &mut y);
inc(p); // Compiled as "f(&mut *p)": we pass a new reference...
inc(p); // ...So p is again available after the call.
inc(p);
assert!(x == 5);

Then, unsafe code can be written to have more power, notably to allow
us to manipulate raw pointers and union members. This is useful to locally
bypass the borrow checker when it’s too restrictive or to interface the program
with foreign functions. The RustBelt [Col18] project proved the guarantees of
the type system and formalized conditions under which unsafe code maintain
the type system guarantees.

2 The Aeneas toolchain
The expressivity, control and guarantees offered by Rust are great, but we

sometimes want to prove more properties about our programs. That’s where
verification toolchains come into play. However, proving properties about
low-level programs (in, e.g., C) has historically been quite tedious, notably
due to a lot of mundane, memory-related obligations popping up.

To avoid that, Aeneas [HP22] leverages the type system of Rust to express
a program written in safe Rust into a pure, high-level representation where
those obligations won’t appear: this allows to bypass more heavyweight rep-
resentations such as separation logic.

So, Aeneas is a toolchain published in June 2022 which translates a subset
of safe Rust programs into equivalent functional programs in F⋆, a proof

3

assistant. It exploits Rust type system to produce a lightweight translation
which is free of concerns about memory. For example, the code below is
translated into the following functions:

fn choose<'a, T>(e: bool, x: &'a mut T, y: &'a mut T)
-> &'a mut T

{
if e { x } else { y }

}

fn call_choose() {
let mut x = 2;
let mut y = 6;
let p = choose(true, &mut x, &mut y);
*p += 3;
assert!(x == 5);

}

let choose_fwd (t : Type) (b : bool) (x : t) (y : t)
: result t =

if b then Return x else Return y

let choose_back (t : Type) (b : bool) (x : t) (y : t) (ret : t)
: result (t & t) =

if b then Return (ret, y) else Return (x, ret)

let call_choose_fwd : result unit =
i <-- choose_fwd i32 true 2 6; (* monadic let *)
z <-- i32_add i 3;
(x0, y0) <-- choose_back i32 true 2 6 z;
massert (x0 = 5); (* monadic assert *)
Return ()

We see that the choose function is translated into two functions: the first
one does the job of the choose function, while the second one retrieve the
input updated values once its return value is dropped. So, for each lifetime

4

parameter, we have one corresponding backward function which tells us:
"give me the outputs with this lifetime, I’ll give you back the inputs with the
same lifetime".

To do that, Rust programs are first translated into LLBC programs
("Low-Level Borrow Calculus", a new formalism) with Charon, a dedicated
plugin for the Rust compiler of 10kLOC. Then, an OCaml program of
14kLOC which is also named Aeneas translates an LLBC program to lambda
calculus then embeds it in a functional programming language.

Those steps allow for a modular approach that could be leveraged later by
translating other low-level languages to LLBC, by performing other analysis
on LLBC or targeting another language than F⋆ for the functional translation.

2.1 LLBC

Syntactically, an LLBC program is a form of simplified Rust. Notably,

• It desugarizes the re-borrows: inc(p) becomes inc(&mut *p).

• Expressions are limited: g(f()) becomes let x = f(); g().

• It does not support traits (Rust typeclasses).

• It explicits drops, copies and other implied operations.

• The set of variables stays the same in a function, but they can be
inaccessible (written ⊥).

The important part of LLBC lies in its operational semantics, which we
see by examples below. The environment is written in comments, and omit-
ted variables are set to ⊥. First, here are mutable borrows:

5

let mut x = (1, 2);
// x 7→ (1, 2)

let mut y = &mut x;
// x 7→ loanm l0
// y 7→ borrowm l0 (1, 2)

let z = &mut (*y).0;
// x 7→ loanm l0
// y 7→ borrowm l0 (loan

ml1, 2)
// z 7→ borrowm l1 1

// Read x ⇝ retrieve borrowm l0 ⇝ retrieve borrowm l1:
assert!(x == (1, 2));
// x 7→ (1, 2)

So when a mutable reference is created, the borrowed value is moved in a
new borrow, and a corresponding loan is made at its origin. When a loan is
accessed, its corresponding borrow is dropped and its value is retrieved. As
seen above, multiple borrows can be dropped at once.

In contrast, shared borrows don’t take the value with them. Most of this
report will deal with mutable references only.

let x = (1, 2);
// x 7→ (1, 2)

let y0 = &x;
// x 7→ loans {l0} (1, 2)
// y0 7→ borrows l0

let y1 = copy y0;
// x 7→ loans {l0, l1} (1, 2)
// y0 7→ borrows l0
// y1 7→ borrows l1

let z = & (*y1).0;
// x 7→ loans {l0, l1} (loans {l2} 1, 2)

6

// y0 7→ borrows l0
// y1 7→ borrows l1
// z 7→ borrows l2

assert!(x.1 == 2);
// x 7→ (loans {l2} 1, 2)
// z 7→ borrows l2

This operational semantics is used in two ways: for a concrete execution
and a symbolic execution. The concrete execution can be used to execute a
given LLBC program, for example Aeneas use it to execute functions marked
as unit tests. But here, we’re mainly interested in the symbolic execution
because it’s used to translate the LBC program into a functional program.

The symbolic execution diverges from the concrete execution by execut-
ing all branches in pattern matching and approximating the environment
at function calls. For example, this is the LLBC symbolic execution of the
call_choose function from before:

// Signature of choose:
(bool, &'a mut u32, &'a mut u32) -> &'a mut u32

// Body of call_choose:

let mut x = 2;
let mut y = 6;
// The temporary arguments are in separate statements
// in LLBC, due to the limitation on expressions.
let px = &mut x;
let py = &mut y;
// x 7→ loanm l0, y 7→ loanm l1, px 7→ borrowm l0 2, yx 7→ borrowm l1 6

let p = choose(true, move px, move py);
// x 7→ loanm l0, y 7→ loanm l1, p 7→ borrowm lr (σ : u32)
// A{borrowm l0, borrow

m l0, loan
m lr}

*p += 3;

7

// Step 1:
// x 7→ loanm l0, y 7→ loanm l1, p 7→ borrowm lr (σ

′ : u32)
// A{borrowm l0, borrow

m l1, loan
m lr}

// Step 2:
// x 7→ loanm l0, y 7→ loanm l1, px′ 7→ borrowm l0 σx, py′ 7→ borrowm l1 σy

// Step 3:
// x 7→ σx, y 7→ loanm l1, py′ 7→ borrowm l1 σy

assert!(x == 5);

We see that calling a function results in σ, a symbolic value output, and
A, a region abstraction: this records the function borrows from its inputs
and the function loans from its output. Then, when accessing x, we need to:

• Retrieve the value associated to the borrow l0 (step 3).

• For that, we must first end the region abstraction holding borrowm l0
(step 2).

• For that, the region abstraction must get the value associated to its
loans (step 1).

So, for each function call, we get one region abstraction by lifetime parameter
which tracks the inputs and outputs of its corresponding backtrack function.

The translation of call_choose is done by following the symbolic exe-
cution. Notably, the line (x0, y0) <-- choose_back i32 true 2 6 z is
obtained by translating the step 2: the outputs x0 and y0 correspond to the
variables px′ and py′. The rest of this translation is quite straightforward.

The details on the translation (implemented by continuation passing
style) can be found in [HP22]. One important point is that disjunctions
in the control-flow are assumed to be in terminal position: that means that
the continuations of matchs will be duplicated in each branch, because envi-
ronments are only duplicated and not joined (this is partly what I’ve worked
on).

2.2 Charon

A Rust program is compiled through several representations from higher
to lower level. Charon fetches a Rust program at the MIR step ("Mid-level

8

Intermediate Representation"), after that the type checker ran and trans-
lated high-level features (e.g. the lookup of typeclass functions) but before
optimisations on the MIR.

The MIR code is a form of minimal Rust: operations and types are
explicit, high-level features are desugared into lower-level operations, the
control flow is done with goto instructions and the MIR encodes a CFG
(Control-Flow Graph).

The first thing done is to register then reorder all types and functions
declarations of the Rust program so that dependencies of a declaration occurs
before it. In the case of (perhaps mutually) recursive declarations, they are
grouped together. This is done because the target language generally don’t
support unordered declarations as Rust does. This reordering is made to be
as stable as possible regarding the original declarations order.

Then, the MIR code is translated to a similar format (simply named "IR")
but independent from the Rust compiler. This allows a complete control on
this representation, for minor changes and custom identifiers.

After that, this code is translated to LLBC code by reconstructing the
control-flow from the CFG to the AST control-flow (with pattern matching),
without early returns. An option can be enabled to check that no code
duplication occurs, to keep a good quality translation.

Finally, some micro-passes are applied to the LLBC code:

• Some operations are simplified.

• Assertions are reconstructed.

• Functions which return nothing return an unit type.

• Unused local variables are removed.

The resulting LLBC code is exported in JSON.

2.3 Aeneas

Aeneas parses the LLBC JSON and performs a symbolic execution on
it, to transform it to a symbolic AST. Then, this symbolic AST is used to
synthesize the (typed) lambda-calculus translation. Finally, this lambda-
calculus is exported in F⋆. Functions without parameters marked as unit
tests can also be executed with the concrete semantics to pass them.

9

Aeneas misses some features that can be provided by a purely safe Rust
implementation, such as:

• Constants.

• Loops.

• Nested borrows (such as &'a mut (T1, &'b mut T2)).

• Borrows in enumerations, and so borrows in recursive types as well.

• Closures.

• Dynamic drops.

• Hierarchies between lifetimes.

• The high-level features coming with traits (Rust typeclasses).

3 Personal work
The four sections below goes from the most concrete to the most specula-

tive work. The two first sections (constants and joins) took most of my time
and are compatible with Aeneas formalism, whereas the two next present
alternative formalisms to address the functional translation.

3.1 Constants

A limit of Aeneas is that declarations of global variables are not sup-
ported. Global mutable variables stay out of scope because they are only
supported in unsafe code, so my first contribution was to add global con-
stants to Aeneas. This conceptually small addition ended up in quite signifi-
cant changes (the total changes being +3300 and -1800 LOC) which address
some adjacent issues or limitations.

After those changes, Aeneas can translate the following file . . .

10

const X: u32 = u32::MAX;

static Y: u32 = add(2, 3);

const fn add(a: i32, b: i32) -> i32 {
a + b

}

. . . To this F⋆ file:

module Constants
// Contains common stuff such as the result monad or eval_global.
open Primitives

(** [core::num::u32::{8}::MAX] *)
let core_num_u32_max_body : result u32 = Return 4294967295
let core_num_u32_max_c : u32 = eval_global core_num_u32_max_body

(** [constants::X] *)
let x_body : result u32 = Return core_num_u32_max_c
let x_c : u32 = eval_global x_body

(** [constants::add] *)
let add_fwd (a : i32) (b : i32) : result i32 =

i <-- i32_add a b;
Return i

(** [constants::Y] *)
let y_body : result i32 =

i <-- add_fwd 2 3;
Return i

let y_c : i32 = eval_global y_body

More precisely, we want to translate global const and static variables
from safe Rust programs and treat uniformly those two kinds of declaration.
They are distinct in Rust because static variables are guaranteed to be unique

11

(with a single address): they are similar to inline variables in C++17 or static
variables defined in a C function, while const values can be freely duplicated
1.

While safe Rust supports const variables parametrized by generic types,
this feature is not added by this work. Now, we’ll follow the translation of
global variables from the Rust program to their representation in a functional
programming language.

Most modifications happened in Charon. The first step is to be able to
find the const and static global variables in the Rust MIR program. Statics
were a bit tricky because they are treated by the compiler as a constant
address to an allocation: the static is mentioned in a tag associated to this
allocation.

Once they are found, global variables are registered in a new, third kind
of declaration alongside types and functions. Here, I did some refactoring to
reduce duplications between type and function declarations and to abstract
common parts between function and global declarations. I also decoupled
the mechanism to avoid infinite recursion from the depth-first visit of the
Rust MIR.

Before this work on globals, external globals (such as u32::max from the
standard library) were supported by being inlined there they are used. Now,
external globals are exported separately, as shown in the example above.

Then, we need to add globals in the LLBC language. For that, I updated
it with global declarations and an instruction to assign a global. The in-
struction is separated from a regular assignment as the result from a tradeoff
between a higher-level langage and more atomic operations.

I also removed constant ADTs ("algebraic data types", types from enu-
merations and records or tuples) from LLBC: this was inherited from Rust
MIR but not really wanted in LLBC where no difference is made between
run-time and compile-time values. To do that, I implemented a micro-pass
to change them to regular ADTs.

Then, in Aeneas, I adapted LLBC to the removal of constant ADTs, the
global declarations and the global assignments. I first proposed to treat glob-

1See https://rust-lang.github.io/rfcs/0246-const-vs-static.html for more
details.

12

https://rust-lang.github.io/rfcs/0246-const-vs-static.html

als as functions without arguments, but in the end I treated them separately
to exploit the fact that they cannot fail.

Indeed, by default every function is wrapped in a result monad which
accounts for possible panics of the Rust program (e.g. when an addition
overflows). However, const or static globals are initialized at compile-time,
so they do not panic. To exploit this, their declaration is separated in two:

• The global body, which is treated like a regular function without argu-
ments.

• The global "real" declaration (the one used to refer to the global),
which normalizes the global body and unwraps its value.

This also normalizes the constant bodies. With this last step, the trans-
lation is finally complete.

3.2 Joins

Another limit of Aeneas concerns the way borrows are approximated:
every execution path of a function goes under symbolic execution because the
approximation only takes place at function call sites. In presence of multiple
pattern matching, that leads to a combinatorial explosion of branches, which
harms both the translation performances and, more importantly, the quality
of the translation.

For example, here is a Rust program followed by some pseudo-code for
its translation:

if a { f() };
if b { g() };
h();

if a
then f ; if b

then g ; h
else h

else if b
then g ; h
else h

13

We see that the rest of the function (here named h) is already duplicated
four times. On top of that, loops are not supported because the current
method would create an infinity of execution paths:

loop {
if a { break };
f();

}
g();

if a then g
else f ; if a

then g
else f ; if a

then g
else f ; ...

My second contribution is a join operation to merge environments. This is
also a first step towards loops: we would then need to compute a fixpoint on
the environment joins to then translate loops into recursive functions whose
input is the program environment.

Then, joins mark a shift in the way borrows are treated because they will
be approximated at the level of control-flow branches (in loops and branches)
on top of function calls. A join is defined as an n-ary commutative operation
on environments which yields a new environment. The 0-ary case is not
defined.

I’ll present first the binary version for a lighter formalism: the n-ary
version is then straightforward but nonetheless required because the join
operation is not associative. The joined environments are from the same
function, so they must have the same variables with the same types. However,
they may have different regions. We’ll see how to join the environments from
the following code:

let ab1 = (a1, b1);
let ab2 = (a2, b2);
let p: &mut (A, B);
let q: &mut A;

14

// ab1 7→ (a1, b1)
// ab2 7→ (a2, b2)
if e {

p = &mut ab1;
q = &mut ab2.0;
// ab1 7→ loanm l0
// ab2 7→ (loanm l1, b2)
// p 7→ borrowm l0 (a1, b1)
// q 7→ borrowm l1 a2

}
else {

p = &mut ab2;
q = &mut ab1.0;
// ab1 7→ (loanm l2, b1)
// ab2 7→ loanm l3
// p 7→ borrowm l3 (a2, b2)
// q 7→ borrowm l2 a1

}
// Which environment ?

Intuitively, we can see an environment as an hypergraph whose vertices
are values and edges are region abstractions borrowing and lending values
(or simple loan identifiers for 1-to-1 cases). Then, the join operation takes
hypergraphs with the same vertices and do the union of their abstractions.
That may create region abstractions when 1-to-1 cases become more complex.

More precisely, the join of two environments E0 and E1 is the environment
where

• Each variable vi has the value given by the join of the values from
variables with the same identifier in E0 and E1: in pseudo-code, vi 7→
E0.vi ∪ E1.vi.

• Region abstractions are those from E0 or E1. In case the abstraction
comes from both E0 and E1, they are joined.

So, it remains to define joins on values of the same type and on abstrac-
tions. For that, I gave rewrite rules which aims to ultimately eliminate all
occurrences of "∪". If no rule can be applied but some "∪" remains, it’s
treated as a type error. This happens for example if exactly one of the two

15

values is ⊥: the same variables must be alive at the join. So, this cannot
supports dynamic joins 2 without further additions.

// The joined environment before rewriting "∪"s.
ab1 7→ (loanm l0) ∪ ((loanm l2, b1))
ab2 7→ ((loanm l1, b2)) ∪ (loanm l3)
p 7→ (borrowm l0 (a1, b1)) ∪ (borrowm l3 (a2, b2))
q 7→ (borrowm l1 a2) ∪ (borrowm l2 a1)

The joined environment from the example above will be expanded after
explaining the rules. Some conventions are used for the rewriting rules below:

• s, s0, s1, . . . are symbols.

• l, l0, l1, . . . are loan identifiers.

• r, r0, r1, . . . are region abstraction identifiers.

• x, x0, x1, . . . are values from the left environment (i.e. the join first
input).

• y, y0, y1, . . . are values from the right environment.

• Identifiers appearing in the right part of reduction rules are fresh iden-
tifiers.

Asymmetric rules are implicitly duplicated with swapped arguments.

Bottom: ⊥ ∪⊥⇝ ⊥

Symbols:

• s0 ∪ s1 ⇝ s2

• s0 ∪ y,⊥ /∈ y ∧ borrow /∈ y ∧ loan /∈ y ⇝ s1

• s ∪ (y0, . . . yn), let y = (y0, . . . yn) in ⊥ /∈ y ∧ (borrow ∈ y ∨ loan ∈
y)⇝ (s0, . . . sn) ∪ (y0, . . . yn)

2See https://rust-lang.github.io/rfcs/0320-nonzeroing-dynamic-drop.html#
how-dynamic-drop-semantics-works for a description of dynamic drops.

16

https://rust-lang.github.io/rfcs/0320-nonzeroing-dynamic-drop.html#how-dynamic-drop-semantics-works
https://rust-lang.github.io/rfcs/0320-nonzeroing-dynamic-drop.html#how-dynamic-drop-semantics-works

The conditions to apply the second rule holds because it is not sound to
simplify loans or borrows. The third rule is simply the symbolic expansion
of s when it matches a tuple containing some loans or borrows.

Tuples: (x0, . . . xn) ∪ (y0, . . . yn)⇝ (x0 ∪ y0, . . . xn ∪ yn)

Region abstractions: Unless they have the same definition, the join fails.
It may be possible to lighten this condition by doing the union of their
values and assigning a backward function that calls the backward function
of the region corresponding to the taken branch, but that need more testing.
That allows us to curry some values given back in some (but not all) joined
branches.

Mutable loans:

• (mut_loan l) ∪ (mut_loan l)⇝ mut_loan l

• (mut_loan l) ∪ x,⊥ /∈ x ∧ loan /∈ x⇝ mut_loan l

• (mut_loan l) ∪ x,⊥ /∈ x ∧ loan ∈ x⇝ mut_loan l0 and a new region
r{mut_borrow l0 s0,mut_loan l, loans(x)...}

In the second and third rules, we can assume that borrow /∈ x because
nested borrows are not supported. In the n-ary version, the third case is
picked when there are different loans among the joined values, and the new
region abstraction retrieves loans from all joined values.

Mutable borrows:

• (mut_borrow l x) ∪ (mut_borrow l y)⇝ mut_borrow l(x ∪ y)

• (mut_borrow l0 x0) ∪ (mut_borrow l1 y0)⇝ mut_borrow l2 s0 and a
new region r{mut_borrow l0 s1,mut_borrow l1 s2,mut_loan l2}

The join main rules are the one creating new region abstractions (in loans
and borrows): it takes the graph of borrows from both environments and add
regions for loans going to different places and borrows from different places.

Shared borrows are treated similarly to mutable borrows. There are some
remaining limitations when a safe Rust program weakens a mutable borrow
into a shared borrow in one of the joined branches, because it will prevent to

17

eliminate the join of shared and mutable borrows and be treated as a type
error.

Now, backwards functions should be associated to region abstractions to
retrieve the values. I will present those for the n-ary version, in the case
of match. A region abstraction can be seen as a signature for a backward
function whose arguments are the region loans and the outputs are the region
borrows.

Then, a region r{mut_borrow l,mut_loan l0, . . .mut_loan ln} from the
third rules of loans applied to x0 ∪ . . . ∪ xk receives the backward function
λ(l0, . . . ln).match e {case 0 ⇒ x0[li/loan li], . . . case k ⇒ xk[li/loan li]}
where "e" is the discriminant of the matched enumeration. "[li/loan li]"
means that every loan in a joined value is replaced by the corresponding
backward function argument. The same function is created for shared loans.

Finally, a region r{mut_loan l,mut_borrow l0, . . .mut_borrow ln} from
the third rules of borrows applied to mut_borrow x0 ∪ . . .∪mut_borrow xn

receives the backward function λ(l).match e {case 0⇒ (l, x1, . . . xn), case 1⇒
(x0, l, . . . xn), . . . case n ⇒ (x0, x1, . . . l)}. The same function is created for
shared borrows.

The backward function for loans fills holes in the expression from the
executed branch, while the backward function for borrows gives back the
borrowed values except the one from the executed branch, to give the updated
value instead. We can now complete the join:

ab1 7→ (loanm l0) ∪ ((loanm l2, b1))
ab2 7→ ((loanm l1, b2)) ∪ (loanm l3)
p 7→ (borrowm l0 (a1, b1)) ∪ (borrowm l3 (a2, b2))
q 7→ (borrowm l1 a2) ∪ (borrowm l2 a1)

// Join the ab1 values:
// Yields a new loan and its new region.
ab1 = loanm l4
ab2 = ((loanm l1, b2)) ∪ (loanm l3)
p = (borrowm l0 (a1, b1)) ∪ (borrowm l3 (a2, b2))
q = (borrowm l1 a2) ∪ (borrowm l2 a1)
R0 {

borrowm l4,
loanm l0,

18

loanm l2,
// "l0" and "(l2, b1)" are the joined values of ab1,
// after the substitution for their loans.
λ(l0, l2). match e with

| true → l0
| false → (l2, b1)

}

// Join the remaining values:
ab1 = loanm l4
ab2 = loanm l5
p = borrowm l6σ0

q = borrowm l7σ1

R0 {
borrowm l4,
loanm l0,
loanm l2,
λ(l0, l2). match e with

| true → l0
| false → (l2, b1)

}
R1 {

borrowm l5,
loanm l1,
loanm l3,
λ(l1, l3). match e with

| true → (l1, b2)
| false → l3

}
R2 {

borrowm l0, // Borrowed (a1, b1)
borrowm l3, // Borrowed (a2, b2)
loanm l6,
// Recall the resulting square, constant
// everywhere but on the diagonal.
λ(l6). match e with

| true → (l6, (a2, b2))
| false → ((a1, b1), l6)

19

}
R3 {

borrowm l1, // Borrowed a2
borrowm l2, // Borrowed a1
loanm l7,
λ(l7). match e with

| true → (l7, a1)
| false → (a2, l7)

}

Those rules can yield regions whose loans/arguments come from other
regions. In those cases, in can be useful to inline those arguments to "flatten"
the graph of borrows, so that all regions take their arguments from values.
This can be done by "inlining" in a region the arguments from the regions it
depends on, as shown below:

// Starting from the previous environment.
// We can inline dependencies in R0 from other regions:
R0 {

borrowml4,
loanml6,
loanml7,
λ(l6, l7).

let l0 = R2(l6).0 in
let l2 = R3(l7).1 in
match e with
| true → l0
| false → (l2, b1)

}

// We unfold R2 and R3 backward functions ...
R0 {

borrowml4,
loanml0,
loanml2,
λ(l6, l7).

let l0 = match e with
| true → l6

20

| false → (a1, b1)
in
let l2 = match e with
| true → a1
| false → l7
in
match e with
| true → l0
| false → (l2, b1)

}

// ... And simplify R0 backward function.
R0 {

borrowml4,
loanml6,
loanml7,
λ(l6, l7).

match e with
| true → l6
| false → (l7, b1)

}

// Let's retrieve ab1 value to check the join:
// We feed the value of borrows l_6 and l_7 to R0 ...
ab1 = R0(match e with

| true → (a1, b1)
| false → (a2, b2)

, match e with
| true → a2
| false → a1

)

// ... Unfold R0 backward function ...
ab1 = match e with

| true → (a1, b1)
| false → (a1, b1)

// ... And simplify the resulting expression.

21

// That's indeed ab1 value!
ab1 = (a1, b1)

I have not yet defined how those backward functions precisely fit in the
current backward function translation.

Subsequent work on loops is not done. The next step would be to com-
pute a fixpoint on the environment with successive joins to determine the
environment at the start of the loop. The environment at the end of the loop
is simply a join of paths ending on a break statement. Then, the loop body
can be translated to a recursive function. More work would be needed to al-
low inner return statements and nested loops with labelled break or continue
statements.

3.3 Typed loan identifiers

To implement joins, my first approach as to type the loan and borrow
identifiers with the set of possible identifiers. That would allow to

• Simplify at any time the environment values.

• Split the computational content of an environment from its type.

• Aim to capture additional features such as borrows in enumerations or
nested borrows.

• Control the loss of precision during joins.

However, it makes too much changes to be incorporated to Aeneas.

Loan identifiers are renamed holes. The key idea is to introduce a subtyp-
ing relation on environments, so we can weaken them to loose in precision:
given two environments of type E0, E1 such that E0 ≤: E1, we have a coer-
cion operation written (e : E0) as E1 which transport the values of e in E1

with the identity function.
Then, E0 ∨ E1 gives the join of two compatible environments: the most

specific supertype E0∨1, meaning that E0, E1 ≤: E0∨1 ∧ ∀E.E0, E1 ≤: E ⇒
E0∨1 ≤: E. This operation is associative and commutative, so we can ignore
in which order we merge the environments (at the end of a match or at the
beginning of a loop).

22

An environment is a set of variables, a variable being a pair of an identifier
and a typed value: {v ← (x : T), . . .} : env. Two environments are compati-
ble if their variables have the same identifiers and compatible types. Then,
we have E0 ≤: E1 iff environments are compatible and we have T0 ≤: T1 for
each (common) variable v ← (x0 : T0), v ← (v1 : T1).

So, it remains to define the union, the compatibility relation and the
subtyping relation on types. Compared to Aeneas, loan and borrow types
are now typed with the set of possible holes for the loan or borrow. So first,
we introduce new rules to manipulate holes:

H-new
Γ ⊢ h : hole, h /∈ Γ

H-empty
{} : holes

H-point
Γ ⊢ h : hole

Γ ⊢ {h} : holes

H-union
Γ ⊢ A : holes ∆ ⊢ B : holes

Γ,∆ ⊢ A ∪B : holes
When calling functions, lifetime parameters are interpreted as sets of holes

in the context. Those are the only possible open terms for hole sets. The
holes of references associated to those lifetimes are then the only possible open
terms for holes. Hole sets are given a normal form by separating concrete
holes, open terms for holes and open terms for hole sets in three different
sets. This form is preserved by unions is facilitates the evaluation of the ⊆
predicate.

We can now define types including mutable loans and borrows. Their
shared flavor has not been investigated.

Mloan-type
Γ ⊢ A : type,H : holes

Γ ⊢ A < H : type

A loan of type A < H is a value of type A accessible once the holes in H
are filled. For this reason, we can always weaken a type by adding holes to
it. Moreover, types can also be weakened by propagating holes from one of
its inner type to an outer type. For example, (A < {h}, B) ≤: (A,B) < {h}.

Then, we can determine the union of two loans: (A0 < H0) ∨ (A1 <
H1) ⇝ (A0 ∨ A1) < (H0 ∪ H1). If only one value is a loan, we first change

23

the type of the other value A to A < {} : those types are equivalent as they
have the same values.

Mborrow-type
Γ ⊢ A : type,H : holes

Γ ⊢ A > H : type

A borrow of type A > H is a value of type A that will fill one of the
holes in H once the borrow is dropped. So, we can weaken a borrow by
adding holes which are not filled in H, in the same way as for loans. The
union rule follows the one for loans: (A0 > H0) ∨ (A1 > H1)⇝ (A0 ∨ A1) >
(H0 ∪ H1). Note that when a borrow is created, its hole set is a singleton:
borrows with an empty set occur when constructing an enumeration which
has another constructor parametrized by some region. For example, the value
Option<&'a mut T>::None has the sum type () | (A > {}).

Finally, two types are compatible if they are the same modulo their holes
in borrows and loans (A being compatible with A < H). This corresponds
to the existence of their join.

Now, to handle the functional translation, we need to recover or replace
backward functions. They are two candidates for that:

A first way would be to keep all holes local, so that when ending a bor-
row, we can immediately fill its corresponding hole. This "eager" approach
eliminates backward functions but pass and return additional data from func-
tions. For that, we define a mold function which determines the additional
data from a function argument type (we consider here that a function takes
exactly one argument to simplify):

• mold((A,B))⇝ (mold(A),mold(B))

• mold(A | B)⇝ mold(A) | mold(B)

• mold(A < H) is undefined (function arguments cannot have loans).

• For an atomic or generic type, mold(A)⇝ ()

• mold(A > H)⇝ ((A < H),mold(A))

The last rule is the more important, it says that a borrow comes with
its hole and the mold of its underlying value. For example, given a nested
borrow &'a mut (A, &'b mut B), we get:

24

mold((A,B > H1) > H0)
= ((A,B > H1) < H0, ((), (B < H1, ())))
≃ ((A,B > H1) < H0, B < H1).
This is because we pass both the hole corresponding to a given borrow

and the holes which may be filled by re-borrowing some fields under the given
borrow:

fn relocate(x: &'a mut (A, &'b mut B), y: &'b mut B) {
// Here holes, l0, l1 and l2 are symbolic values.
// l0 ∈ H0 and l1, l2 ∈ H1.
// x 7→ borrowm l0 (σ0, borrow

m l1 σ1) : (A,B > H1) > H0

// y 7→ borrowm l2 σ2 : B > H1

// mold(x) 7→ (loanm l0, loan
m l1) : ((A,B > H1) < H0, B < H1)

// mold(y) 7→ loanm l2 : B < H1

*x.1 = move y;
// x 7→ borrowm l0 (σ0, borrow

m l2 σ2) : (A,B > H1) > H0

// mold(x) 7→ (loanm l0, σ1) : ((A,B > H1) < H0, B)
// mold(y) 7→ loanm l2 : B < H1

drop x;
// mold(x) 7→ ((σ0, borrow

m l2 σ2), σ1) : ((A,B > H1), B)
// mold(y) 7→ loanm l2 : B < H1

// The mold values are returned from the function.
// In the concrete evaluation, they replace the mold input values.
// In the symbolic evaluation, they may just remove some H0 loans.

}

This approach needs some more work, but seems to work well even when
adding features such as nested borrows or borrows in recursive types. How-
ever, its calculus is not fit for lambda calculus and the translation is quite
heavyweight, due to the additional data which come around at function calls.

So while this may be a good approach to specify a borrow checker for
Rust, a lazier approach would be preferable for the functional translation.

The second approach is to consider mold values as backward functions,
which are built from the operations such as drops inside the function. More
work is also required to explore this case.

25

3.4 Denotational semantics

To interpret a LLBC program, I also began a graphical approach to cap-
ture its denotation while minimizing sequentiality: values are interpreted by
oriented strings (from left to right) and functions by boxes, taking arguments
on their left and outputting results on their right. The model is not yet fixed
but the needed operations suggest some monoidal category.

References are pairs of values, one of them going backwards, which is its
dual object. They are created by a demi-circle to the left (an unit operation)
and dropped with a demi-circle to the right (an eval operation). Product
types can be eliminated by splitting its values while sum types are elimi-
nated by splitting the environnement (their merge correspond to the join
operation).

For example, this is how the choose function is represented:

A sheet or plan corresponds to an environment and a vertical slice of it
to the environment at a certain state: in particular, boxes (left and right)
boundaries fix the passing environment type. Backward functions corre-
sponds to the part of this function which manipulates backward values. We
can remark that a loop would be represented by a cylinder, as the environ-
ment sheet rolls back to the loop beginning.

Then, a program is correct when it is sequentializable, i.e. when it can
be continuously deformed to eliminate all backward values: this amounts to
performing the functional translation. That means that no function input
depends on any of its output: this is a global acyclicity condition. Another
condition concerns the fact that values must outlive references on it: that

26

means that a value dropped in a box cannot depend on a backward value
exiting the box.

The borrow checker rules and regions are understood as a mean to check
those conditions in a compositional way by approximating the possible entan-
glements inside boxes in a "predicative" way (values live in a greater scope
than their references). It remains to understand how those contraints fit in
this setting ...

An interesting point with this model is that it seems to be able to ma-
nipulate loans (i.e. backward values) explicitly: this would allow to use some
safe patterns that I was using in C++ and that I miss in Rust. It contrasts
with the predicative way of handling references described above: for exam-
ple, we would be able to allocate a collection in a function, borrow one of its
elements then return the collection along the reference. Several Rust libraries
address this limitation for very specific cases.

// Pseudo-Rust code for the pattern above:
// We can return a reference and its borrowed value.
fn make_heap_ref<T>(x: T)

-> exists 'a.(Vec<loan 'a mut T>, &'a mut T)
{

// Move x on the heap (with an owned allocation).
let mut b = Box::new(x);
// Take a reference on the moved value.
let r = b.as_mut();
(b, r)

}

This also illustrates some important parts to interpret: moving values
in Rust is not an innocuous operation because references on the value are
invalidated. However, that doesn’t necessarily apply to moved value members
which are not themselves moved, such as the inner Box value above.

4 Related works
The idea to exploit Rust type system to ease the verification of Rust

programs is not new:

27

Electrolysis [Seb16] is a framework which translates some safe Rust pro-
grams in Lean by treating references as lenses. It supports fewer programs
than Aeneas, for example the choose function is not translated.

Otherwise, there are two ongoing projects to verify annotated Rust pro-
grams which cover (among other things) constants and loops:

Prusti [Ast+22] encodes Rust program in Viper, a toolchain that allows to
reason on program states with notions of permissions and ownership. Them
it uses Rust type system to automatically apply some rules to ease the veri-
fication.

There is also Creusot [DJM21], an encoding of Rust programs in Why3
based on prophecy variables, an higher-level logical representation of Rust
borrows. Its interface is similar to Prusti: it takes annotated programs and
produce intrinsic/automated proofs, as opposed to Aeneas or Electrolysis
(untouched programs, external proofs).

Finally, the RustBelt [Col18] project allows to verify Rust programs, in-
cluding their unsafe parts. For this reason, this framework uses a more heavy-
weight encoding of the program and is more seen as a complementary work
(to address the small, tedious unsafe parts of the code) than an alternative.

5 Future works
Most future works concerns Aeneas, which is built in an incremental way:

• The most direct continuation would be to precise and implement the
join operation in Aeneas then work on loops.

• There are a lot of features to add, listed in the Aeneas subsection:
typeclasses, closures, nested borrows, lifetimes subtyping, ...

• Soundness proofs are always welcomed.

• Aeneas aims to ramp up the verification with bigger projects: a verified
implementation of bϵ tree is ongoing.

Then, I’m also interested in alternative formalism to address the func-
tional translation, as well as the questions about typechecking and denota-
tional semantics starting from a similar language to LLBC:

28

Typed joins suggest that a borrow checker is feasible by filling holes ea-
gerly (to avoid backward functions). I began writing an implementation of a
type checker on a small LLBC variant to explore this case.

Also, did not have the time to pass a lot of time on the denotational
semantics but I believe that searching safe patterns in this kind of model
can be fruitful to interpret more low-level programs, and this mirrors Rust
capacities to offer novel safe interfaces with unsafe implementations.

A possible plan would be to design a category C with local rules to ap-
proximate the global invariants described on diagrams so that any morphism
in it is a valid program, then translate those morphisms with a faithful func-
tor in a category without duals and close to actual proof assistants. That
would allow to extend the set of verifiable imperative programs by extending
C.

References
[Ast+22] Vytautas Astrauskas et al. “The Prusti Project: Formal Verifica-

tion for Rust”. English. In: NASA Formal Methods. Ed. by Jy-
otirmoy V. Deshmukh, Klaus Havelund, and Ivan Perez. Lecture
Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics).
Springer, 2022, pp. 88–108. isbn: 9783031067723. doi: 10.1007/
978-3-031-06773-0_5.

[Col18] Adrain Colyer. “RustBelt: Securing the Foundations of the Rust
Programming Language”. In: the morning paper (Jan. 2018). url:
https://blog.acolyer.org/2018/01/18/rustbelt-securing-
the-foundations-of-the-rust-programming-language/.

[DJM21] Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. The
CREUSOT Environment for the Deductive Verification of Rust
Programs. Research Report RR-9448. Inria Saclay - Île de France,
Dec. 2021. url: https://hal.inria.fr/hal-03526634.

[HP22] Son Ho and Jonathan Protzenko. “Aeneas: Rust Verification by
Functional Translation”. In: ICFP 2022. Aug. 2022. url: https:
//www.microsoft.com/en-us/research/publication/aeneas-
rust-verification-by-functional-translation/.

29

https://doi.org/10.1007/978-3-031-06773-0_5
https://doi.org/10.1007/978-3-031-06773-0_5
https://blog.acolyer.org/2018/01/18/rustbelt-securing-the-foundations-of-the-rust-programming-language/
https://blog.acolyer.org/2018/01/18/rustbelt-securing-the-foundations-of-the-rust-programming-language/
https://hal.inria.fr/hal-03526634
https://www.microsoft.com/en-us/research/publication/aeneas-rust-verification-by-functional-translation/
https://www.microsoft.com/en-us/research/publication/aeneas-rust-verification-by-functional-translation/
https://www.microsoft.com/en-us/research/publication/aeneas-rust-verification-by-functional-translation/

[Seb16] Ulrich Sebastian. “Electrolysis: Simple Verification of Rust Pro-
grams via Functional Purification”. MA thesis. Karlsruhe Insti-
tute of Technology, 2016. url: https : / / github . com / Kha /
electrolysis.

30

https://github.com/Kha/electrolysis
https://github.com/Kha/electrolysis

	Context
	Rust

	The Aeneas toolchain
	LLBC
	Charon
	Aeneas

	Personal work
	Constants
	Joins
	Typed loan identifiers
	Denotational semantics

	Related works
	Future works

